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ABSTRACT

Results are obtained dealing with the exact and the approximate
representation of a function F as a superposition, in designated formats,
of functions of fewer variables. Two main cases are considered. In the
classical nomographic case, discussed in Sections 5, 6,7, one seeks
criteria for deciding if a function can be expressed in the form
f(¢(x)+W(y)), or as a uniform limit of such functions. The second case,
discussed in Sections 2, 3,4, is also related to the solution of Hilbert's
13th problem, and deals with the format F(x) = f(¢(x)) where x lies in
an n-cell I and ¢ is a real valued continuous function on I, and f
is a function on R taking values in a chosen normed space ¢ . The
use of these criteria is illustrated with several specific functions.

Since each format is associated with a specific partial differential
equation, the results raise questions about the nature of the uniform
closure of the Cm solutions of such equations. Section 3 may also have
more general interest since it shows that every continuous real function
on an n-cell must share a certain universal property related to the metric

dispersion of its level sets.
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APPROXIMATE COMPLEXITY AND FUNCTIONAL REPRESENTATION

R. C. Buck

1. Summary

In the last four decades, there has been a growing interest in the
theory of functional complexity, focussed initially on the problem of
representing a given function as a superposition of functions of fewer
variables, and stemming from the challenge of Hilbert's 13th problem.

Not to be overlooked, however, are the early papers of Nina Bary dealing
with representability of measurable and continuous functions [ 4] and the
persistent interest in Russia and elsewhere in nomography and the use of
mechanical linkages to generate specific functions. [15] This has now
taken on additional interest with the advent of the computer and the in-
troduction of new freedoms and new constraints; for example, composition
is a faster operation than multiplication.

Many of the basic questions have been answered by the works of
Vitushkin, Arnold and Kolmogoroff, (23] (1] [13]. In particular, the
former has shown that the number n/p is a convenient index to measure
the total complexity of the class of functions of n variables that have
continuous derivatives of orders up to and including p . By a category
argument, one can show that there are functions not representable by
composition of functions of lower complexity. (See the excellent account
of this in Lorentz [14] ). If only continuity is required, corresponding to

p = 0, the Vitushkin index is no longer useful. One basic question,

Sponsored in part by the United States Army under Contract No. DAAG29-
75-C-0024 and the National Science Foundation Grant MPS 75-06687.
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posed in a special case by Hilbert, is answered by the Kolmogoroff result,
showing that every continuous function of n variables can be expressed
in terms of continuous functions of one variable, and the single binary
function + . A very accessible proof is found in Hedberg [18]. (See

also [3] [19] [24]).

There are two directions to the present paper. The first has to do
with the development of criteria for deciding if specific functions are
non-representable in assigned formats. The second has to do with ap-
proximate complexity; clearly, a function that can be uniformly approximated
by functions of low complexity should also be regarded as having low
complexity.

Most of the space is devoted to two cases, the classical nomographic
case in which one looks at F(x,y) = f(¢(x) + W(y)), and one similar to that
examined by Arnol'd, in which F(x) = f(¢(x)), where ¢ is a real valued
function on an n-cell and the values of f and F may be in any normed
space g . The latter is discussed in Sections 2, 3 and 4, and the former
in Sections 5, 6 and 7.

There is also close contact with some of the work of Doss [8] and
Sprecher [ 20] [21] who also have made use of the level sets of continous
functions in their study of functional representation. Section 3, dealing
with metric dispersion properties of level sets, may have much more
general interest.

Finally, we have stated a number of conjectures to which we have .

been led by this study. Some are connected with the behavior of the partial




differential equations that are characteristic of the function classes con-
sidered: while it is conceivable that a very smooth function F might be
representable in a given format using continuous unsmooth component
functions, we conjecture that F must itself satisfy the associated differ-
ential equation. This is confirmed by some of the results in Sections 2
and 4 for polynomials, using facts about the zeros of polynomials in
several variables.

Some of these results have been announced in [ 6] .

2. The schema f(¢(x,y),z)

This case, which has been studied elsewhere ([1], [16] ) is a
suitable introduction to representability problems. We first set the nota-
tion. Let & be an open connected set in R3 . We write 3n(@) for the
class of real valued functions that are defined in 8 and have there a rep-

resentation of the form

(1) F(x,vy,2z) = f(¢lx,y), 2)

where f and ¢ are of class Cn on appropriate open sets in RZ « Thus,
3 0 will be those functions for which only continuity is required, and

¥ ﬂ?;l,‘) 32

0
Historically, an important step toward the eventual solution of
Hilbert's 13th was Arnol'd's discovery that the convex hull of F 0 contained
all continuous functions of three variables [1] . It had earlier been observed
by Pc;lya that if f and ¢ were completely unrestricted, then the class of

functions represented by the format (1) was in fact universal; every function
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F(x,y,z), real valued or not, has such a representation. [16] . One need
only choose ¢ as a bijection, mapping R2 onto R. Most of our results

will deal with the intermediate class :;w which properly contains Zfo -
and consists of functions of the form (1) where ¢ is required to be con-
tinuous but f is entirely unrestricted.

In contrast with the facts mentioned above, the class of smoothly
represented functions, those in 3n for some n=_>_ 1, comprise a very

thin subset of the class of all continuous functions. The proof of the

following is routine.

Theorem 1. If Fe :;Z(s), then in &, F satisfies the differential equation

(2) FF =5k B =0
X yz y Xz

Conversely, if F satisfies (2) in ¢, then it is locally of the format (1)

in 8 - T, where I' is the set where PxFy =0.

Corollary: Any function in !;0(@) can be approximated locally, uniformly

on compact sets, by functions in ¥ which satisfy equation (2).

We next seek a weaker characterization theorem that does require us
to deal with functions that are twice differentiable. As a first step, observe
that Theorem 1 can be restated. For fixed z, z = ¢, consider the planar

mapping T defined by

i

F(x,y,c)
(3) T:

<
[}

F_(%,y,¢)
Then, equation (2) is the same as 8(u,v)/d(x,y) = 0, and thus the

i




criterion given in Theorem 1 for F to belong to 32 becomes the statement

that the mapping T is everywhere locally singular, for each choice of ¢ .
This observation leads in turn to a C' characterization. Given a
function F(x,y,z) of class C' on 6, which for simplicity we take to be

-

an open box XX Y X Z, take c, and c, in Z and then define a planar

1 2
mapping T by
u = F(x,vy, cl)
T
v = F(x, y,cz)

Ed

Theorem 2. 1lf F= '51(@), then the mapping T given by (4) is locally

singular in XX Y for every choice of ) and c, in Z in the sense that

d(u,v)/d(x,y) = 0. Conversely, if T is locally singular in XX Y for

1 Sz then the function F is locally representable in the

form (1) in the set ¢ - T,

all choices of c

To prove the second half, let (x zo) be a point where FxFyae 0.

0, yo’
The hypothesis on T then implies that there is a function p(x,y), defined
and non-zero on a neighborhood of po 2 (xo,yo) such that FX(X, v.z) -

and all (x,y) near Pg Let

B(x,y) Fy(x,y,z) = 0 forall z near 2,

¢(x,y) be a solution of the equation ¢x - Bd>y = 0 near p0 . Then, one
finds that there exists a function f such that F(x,y,z) = f(¢(x,y),z) for all

z near z. and all (x,y) near p

0 0
This elementary result is sufficient to show that specific functions
(e.g. Xy + yz + Xz or ny + yzz + zzx) do not belong to the class 81

locally. However, this does not mean that such functions could not belong
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to either of the larger classes 30 or O Although each function
mentioned is in Cw, it might possibly be representable in the form (1)

with non-smooth choices for f and ¢ . The next result, which is a partial
characterization of these larger classes, allows one to settle this question,
and in turn can be extended to handle the uniform closure of either 30
o Fo
Before proceeding, it is helpful to recast the original problem. Instead
of considering a function F from X X Y X Z into R, it is equivalent to
regard F as a mapping from XXY into the function space C[2], which
may as well be replaced now by any normed space & . The problem of
representing F in the format F(x,y,z) = f(o(x, ¥),2) is replaced by the
simpler format F = f o ¢, and becomes a familiar factoring problem. Given
F

, @ mapping from XX Y into ¢ , do there exist a real valued function (o)

and an e -valued function f for which the following diagram commutes ?

XXY 4R
/f
(5) P
e

If no restrictions are placed on ¢ or f, then the answer is affirmative for
arbitrary F, merely by taking ¢ as a bijection from XX Y into R .
However, if ¢ is required to be continuous, then this is not the case. We
say that a sublevel set for a function is one on which the function is constant.
Clearly, from (5), any set E that is a sublevel set for ¢ must also be one

for F . Thus, any universal property of sublevel sets of real value continuous

=
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functions on X X Y will also hold for certain sublevel sets of any repre-

sentable F .

Lemma 1. Let ¢ be any real valued continuous function on an n-cell S

n> 2. Takeany p,. ¢S . Then, either ¢ is locally constant at p,. ,
= —_—¥ 0 > 0

or every neighborhood of po contains a non-countable collection of distinct

sublevel sets, each of which is non-countable.

For, if 6 is a convex neighborhood of P, on which ¢ is not con-
stant, we may choose pl, p2 in 8 with d)(pl)# ¢(p2) and any number c¢
with ¢(pl) Ce< d)(pz); then, every arc in 6 from P to p2 contains a
point on the c-level set for ¢ .

Applied to the representability problem, this yields the following simple

criterion; note that it deals with the weak class 3w in which no restriction

is placed on the function f .

Theorem 3. Let F be any mapping from an n-cell S (n > 2) into e¢ which

is of the form F = f « ¢, where ¢ is continuous from S into R. Then,

F must be locally singular in S, meaning that locally, either F is con-

stant, or F has a non-countable number of distinct non-countable sub-

s S o R SN

level sets.

We note that this result is only effective if ¢ 1is larger than R
itself, so that there exist functions F on S to ¢ which do not share this
property of the represental;\e functions. Fo;' example, applied to the original
classical problem, we see at once that xy + yz + zx and ny + yzz + z?'x

do not belong to the class 3 g» Or even to the weak class 3, Onany

=
{
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open set since the associated mapping F from XX Y into C[Z] is easily
seen to be at most 2-to-1, and therefore does not have any large sub-
level sets, as required by Theorem 3. In essence, this simple argument
is much the same as that used by Pdlya in [16] .

Study of these and similar examples leads to the following conjecture,

for which only incomplete evidence has been obtained: 1_f F is a polynomial

that belongs to the weak class :}w on an open set®, then F must satisfy

on 6 the differential equation (2).

Before turning to the problem of approximate representability, and the
search for criteria that must be satisfied by any function that is the uniform
limit of functions in F, OF in 3, we must obtain more refined results
dealing with the nature of the level sets of real valued functions ¢ defined

on an n-cell with n> 2

3. Dispersion properties of level sets
Let ¢ be a real valued function defined on an n-cell S . For any

real number X\, the \ -level set for ¢ is the set E)\ of all points pe S
with ¢(p) = A\, i.e. ¢-l(X) . If ¢ is not required to be continuous, then
each of these sets E can be finite, and in fact a solitary point. If “3 &
and ¢ is continuous, we have seen (Lemma 1) that infinitely many of these
sets E must be infinite. In the present section, we show that there must
always be one of these level sets that achieves a certain minimal disper-
sion in S, .independently of the choice of ¢ . The measure of dispersion

or size which we use is a familiar one related to the notion of metric capacity

8=
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of subsets [14] . Given a set E and a number & > 0, we lock for points

pi ¢ E that are mutually separated by 6, so that ]pi - pj,I ; o for i#) .
Then, pn(E, 6) is the maximum number of such points that can be obtained.

¥ ECS, then n (E, 6)___< n (S,6), and the comparative size of these measures
the degree to which the set E is dispersed in the set S. If S is an

n-cell in R" of side L, then n(s,6) = (L/6)", as 6, 0.

Our main result in this direction is the following.

Theorem 4. Let S be an n-cell of side L, and ¢ any real valued con-

tinuous function defined on S . Then, for any 6 >0,

= (1) if n=2 and 6 <L/2, ¢ must have a level set E
(6) for which n(E,8) > L/é

. (i) If n> 3 and 6 <L/(16), then ¢ must have a level set E
- h )

for which
(7) n(E, 8) > ~—1/6)"/2
2n—l

The conclusion given in (i) is easily seen to be best possible; this
does not seem likely for part (i1), and we conjecture that the exponent
n/2 can be replaced by n-1. More generally, we conjecture that the
following is true: if ¢ is: a continuous mapping from a compact metric
space A onto a metric space B, then t)}ere is a constant C depending
only on A and B such that ¢ must have a level set E CA for which

n(E,8) n(B,s) > C n(A,6), for all sufficiently small 6 .

hile the proofs for part (i) and (ii) are similar, we give them

separately since the conclusions are different. Our first proof for part (i)

-G
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was improved by a suggestion made by Carl de Boor.

Proof of (i). Let S be a square of side L, and 0< ¢ <L/2. Choose
k = [L/8] and consider k+! evenly spaced vertical segments g @)

sy in S, each of length L . Let v, be the real interval d;(ai) .
and suppose that N Ui is non empty. If X lies in each T then we can

choose p, €a so that ¢>(pi) = A\, and we have found k+1 points in the

i
\ -level set for ¢ which are mutually separated by 6 . Thus, D(E)\,é)
> k¥l >L/s . If ﬂcri is empty, then some pair of intervals, say o,
and O'j, are disjoint. Choose \ so that ¢(q1)<)\ <¢(q2) for all q
in a and q, in aj. Construct k+1 horizontal segments ﬁo, [31, e Bk
in S evenly spaced and each intersecting the vertical segments a, and

E @ (See Figure 1). Choose P, € ﬁi so that d)(pi) = X . These again are

points in the \ -level set E)\ and are mutually separated by 6, so that

again n(E, ,6)> L/6 .

Figure 1

~10=




Proof of (ii). Let S be an n-cell of side L with n> 3, and suppose that

0 <6 <L/(16). Choose three integers as follows:

k = [L/6)
i r S )
(8) m=[(L/6)] where r = -
(9) p= [L/(2mé)]

(Thus, when n = 3, m4 ~ L/6 and p4 = (L/(‘S)3 )

Consider k+1 horizontal sheets in S, each an (n-1) cell of side
L, parallel and uniformly spaced at distance L/k > 6 . Divide each
sheet into mn“1 small (n-l) cells of side L/m . Shrink each of these
by a factor of 1/2, leaving its center fixed. Each sheet will then con-
tain a collection of mn— disjoint (n-1) cells of side L/(2m), and
mutually separated by L/(2m). (Figure 2 shows one such sheet, for n = 3,
m=4.)

It is easily checked that L/(2m) > , using the fact that L/é > 16
» 22020 e now have, on all the sheets, a collection of (k+1)m" "
small (n-1) cells ai, each of side L/(2m) and such that any pair of
points from distinct a are separated by at least 6 . Let ¢ be a con-
tinuous function defined on S, and let iy ¢(a1) . Suppose first that
ﬂci is not empty. Choose A\ so that \ € o, forall i, and then
P, e a with ¢>(pi) = A . We have therefore found (k-i»l)mn_l points in
the X -level set of ¢ with mutual distance é . Accordingly,

olE, )2 (khm"

wlf=




%

However, from (8),

m>L/8) -1 > —21-(L/<‘>)r

since L/6 > 16 > Zl/r 5

Thus, we have shown that

n(E, ,6) > (kt) (4 /o)™

.. 1 L (nlpy
5 s )
2
1 n/2
A e (L/6) 5

2

Suppose now that the intersection of all the real intervals v, is

empty. By Helly's theorem, two intervals, say o

i and cj’ must be

disjoint. Choose a real number \ so that

(10) #qy) <\ < ¢a,)

<j2=

! :;‘,l;'f.r» .




for all q] in a, and qz in aj . Look at a which is an (n-1) cell of
side L/(2m), and divide it by a mesh of width (L/2m)/p = L/(2mp) to
produce (p+l)n-l points qi with each pair separated by at least L/(2mp) .
Observe that, by (9), L/(2mp) > 6 . Do the same for the second (n-1) cell
uj, producing pcints qf and then join qi to qf by anarc (31 in S sothatnotwo
points on distince arcs are closer than 6 apart, Because of (10), we can now
choose a point pi on each arc ﬁi with ¢(pi) = N\. We then have (p+l)n'l

points in the A-level set of ¢ , mutually separated by & , and

o(E, ,8) > (p+1)" !

which by ( 8 ) and ( 9 ) yields

L. =l .1
82 Zms ! % Zn—l(

Ln-1_1

HE 3) n-1
m

x ’

r(n-1) r(n-1)

5
2 — 5 (L/%) (6/L)

2
g /6 Yo/L)n-2)/2
2

1

2n--l

n/2

= (L/6)

completing the proof of part (ii) of Theorem 4.

We note that if the more general conjecture given just below the
statement of the theorem were true, then the exponent n/2 would be re-
placed by n-l since Q(S, 6) = (L/(S)n and ¢(S) is an interval J for
which n(], é) = O(1/6) . We have not been able to verify this, nor to

obtain a theorem similar to Theorem 4 for continuous mappings from an
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s
n-cell into R° with 2 < s< n-1. Inthis case, the conjecture is that

n(E,8) = (L/8)" ° .

4. The closure of 3%
w
We now apply the results of the preceding section to obtain criteria
for approximate representability in the class :;w . Let S be an n-cell of
side L, and e be a normed space, and let F be the class of mappings
F from S to & which have the form F(p) = f(¢(p)), where ¢ is a con-
tinuous real valued function on S, and f is an arbitrary function from

Rtoe .

Theorem 5. If G is a function on S to & that can be uniformly approx-

imated on S by functions in 3w then, G must have level sets that

have arbitrarily large finite cardinal. Indeed, given 0 < é < L/(16), there

must exist a level set E for G such that

) n(E,0) > w/6)?

2
Proof: Given ¢ > 0, suppose that there exists F ¢ :;w with HF - G|| < e .
Write F as f o ¢ . By Theorem 4, we may choose a level set E for ¢
such that E obeys (7). 1f pe E, then F(p) = f(\), independent of p,
so that E is also a level set for F . Since |F(p) - G(p)| < ¢ forall
pe S, it follows that E is an approximate level set for G; indeed, if

n/2

N is [2-n(L/6) ], then for each ¢ > 0 we can choose N points P

in S such that lp -pjl > 6 for i#j, while IG(pi)-G(pj)l < 2¢

i

Letting ¢ decrease, and using the compactness of S, we can arrive at

ald~
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N points {p’:} in S with ]pf - p?]Zé while G(pr) = G(p:) B o
G(p;), and we have found a level set for G obeying (l1). Since é can
be arbitrarily small, G must have level sets with arbitrarily many points.

Applied to specific cases, this result shows immediately that the
test functions xy + yz + zx and ny + yzz + zzx cannot be approximated
uniformly by functions of the form f(¢(x,y),z) on any open set in R3 since
they are at most 2-to-1 as mappings from R2 into C[R] . More generally,
the criterion in Theorem 5 implies that any function in the uniform closure
of 3w must be locally singular; every neighborhood must contain arbitrarily
large finite sets on which the function is constant. Accordingly, G will
not lie in the closure of 3w if the sets G-lG(p) are uniformly finite.
This fact, together with some properties of the real zeros sets of poly-
nomials, suggests the following conjecture: no polynomial G(x,y,z) lies
in the closure of :;W(G) for an open set 6 unless G satisfies in 6 the
equation (2).

The technique used above permits one to use Theorem 4 to estimate
the uniform distance from specific functions G to Jw ° We f{irst sketch
the general approach, and then illustrate it with one of the test functions.
Suppose that G is a function on the square IZ into & such that G-lG(p)
never contains more than m points. If G is continuous, then for any q
and € > 0, there isa 6 such that if |G(p) - G(q)| <6, then p is
within ¢ of one of the points in G-IG(q) . Suppose that we can establish

a uniform quantitative version of this with the following form:

-




A

(12) If |G(p) - G(q)| <d, then p is within a distance D = D{(d) of
G-]G(q), for all q, where D is a monotone function of d and D(0) = 0 .
Assuming that such a result has been obtained, we can estimate the
distance from G to :;W(IZ) . Let lG-Fll <¢ for some F e ¥
Using Theorem 4, choose m+l points pi in IZ such that lpi-pj l; L/m
for i # j, and the pi also belong to a level set for F . We will then have
lG(pi) - G(pl)l <2c forall i. Use(12)with d=2¢, p=p, and q= p,
and we see that p, will lie within D of the set G_lG(pl) for each i .
However, this set contains at most m points, so that there must exist two
points p, and P, with i # j such that Ipi - pjl < 2D . Accordingly,
2D(2¢)>L/m and ¢ > (l/Z)D-1 (L/2m), giving the desired estimate for
the distance from G to I
To show how this process works in practice, we apply it to the func-
tion G(x,y,z) = Xy + yz + zx, regarded as a mapping from a square I2
into C[R]:; we take I = [c, c*] where ¢ = ¢+ I, and ¢> 0. The
needed step is a version of the required uniform inverse theorem (12). It

is helpful to note that in the present case,

g™ G(a,b) = {(a,b), (b,a)}

Lemma 2. Let (x,y) and (a,b) be points in the square Iz, with

|G(x,y) - G(a,b)| <d . Then,

l(x,y) - (a,b)l |(x,y) - (b,a)l <62 (c"/L)d

-16-




Proof: Since

IlG(x.y)~G(a,b), = max *Ixy—ab+(x+y—a-b)z|

we have
Ixy - ab+ (x+y-a-b)c| <d
lxy-ab+ (x+y—a-b)c*| <d
which imply
[x+y-a-bl<2d/L

@3 lxy - abl < (c+c')(d/L) .

Now,
l(x~y+a-bix-y+b-a)|<
|x+y-a-b||x+y+a+b|+4|xy-abl

< (2d/L)4c) + 4(c + ¢ )d/L) <1l6c (d/L) .

Now,

2
2l(x,y) - (a,b)l lx+y-a=-bl*+ |x-y+b-al®

2|(X,Y)-(b,a)|2 |X+y--a-b|‘2+|x-y+a-b|2 .

sk
w, p=(x,¥), 9= (a,b) and g = (b,a) we

Setting |x+y -a - b]
have
(Ip - al® - w?/2)lp - 4" 1% - wP/2) <
IZ Ix-y+b-al’lx-y+a-bl? < 6a(c’a/L)’

Accordingly,

s 2
%12 2 x
Ip-qllp-q"| <64(gfg) +!;—{|p—q|2+|p-q|z}

=17
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and using (13) and the fact that % has diameter V2 L,

(64 (c' )’ + 8 1%}

2 *2 4
lp-ql“lp-q | < o

e

< 72(c d/L)®
from which the conclusion follows.
Following the general outline given earlier, we may now use this to

prove the following estimation theorem.

Theorem 6. The function G(x,y,z) = Xy + yz + zx in C[ 13], where

I=[c, c+L] and c >0, is separated from the set 3 W(13) by at least

the distance L>(c+L)2/(96V2)

Proof: Suppose that F ¢ f;w with ||G - Fll <¢ . Choose three points

p, in I° with Ip, - b1 2 L/2 for i#j butwith F(p) = F(p,) = F(p,) .

H

We have ,G(pi) = G(pj), < 2¢ and, by Lemma 2 with d = 2¢ ,
3 *
Ip, - l1p, - p;! < V2 (¢ /L)(2¢)

* %
where ¢ = c+ L and (a,b) = (b,a). Since lpi-pj|2 L/2 we may

conclude that for i #j |,

C
< -

L

Using this for j = 2 and for i =1 and i = 3, we have

*' 48\/.2 C,,=

<———_
2 i

4 #
2 S Ipp-pyl g lpy-p,l4 1o -0 :

- *
from which we obtain ¢ > (96 v2) ! Lg/c as stated.

While this estimate is unlikely to be sharp, it decreases with L

-18-
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in about the way one would expect. It would be of interest to obtain
general results of the form (12) to replace the type of ad hoc argument
given in Lemma 2. [ That this is not possible for all continuous functions

F is shown by the trivial example F(x) = x3 - x2 =

5. The class of nomographic functions

One of the classical questions of functional representability is
whether a given function F(x,y) can be given as a simple three scale
nomogram; specifically, are there three functions of one variable f, ¢,y ,
such that
(14) F(x,y)= f(o(x) + Y(y))
such questions, together with the strong interest in nomography promoted
by d'Ocagne [15] , gave rise to the original formulation by Hilbert of the
13th problem, and the solution by Arnol'd and Kclmngoroff. [1] [13].

We continue to use the notation 3n for the class of functions with
a specific composition format, but this time referring to that given in (14).
As before, 3 0 are those that are representable with continuous f, ¢,y ,
and 3,, nhow refers to those for which ¢ and ¢ are continuous, but f
is unrestricted. Those functions that are smoothly represented form a very

thin subset of the continuous functions.

Theorem 7. 1If F e 33(6), thenin 6, F obeys the differential equation

(15) (F.F F_F -F_F )+ F (FzF —FZF )=0
XYy X Xyy y XXy Xy Y XX X vy

Conversely, any solution of (15) in ® is of the form (14) locally in & - T ,

where I' is the set where ery = 0.

-19-
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The proof is routine. For the converse, if F obeys (15) then in
8 - I, we have

F Poi=g.F
By xx X yy>

{ =0
Ay \ FxPY /

Locally, we can then choose a function &(x), with ¢'(x)# 0 such that
F F - F F i) s BF e
(BF = BE ) etx) = EF ¢"0)

and have

F
B (¥ ¢ux)) =0
pa\E T '

Locally, we can then choose y(y) and have
¢(Y)Fx-¢(x)Fy= 0

and neither ¢' nor ' will vanish at any point in 6 - T". Put
u = &(x) + Uly), V=&x) - b(y) and define G by G(u,v) = F(x,y), locally.

Since Gv = 0, F(x,y)= G(u,-)= f(u) = f(d(x)+ ¥(y)), as required.

Corollary: Any function F in 30(@) can be approximated locally, uni-

formly on compact sets, by functions in 3F which satisfy the equation

(15).

The result in Theorem 7 says little about the problem of nomographic
representability in the classes 34 for n < 2 or in the weak class Suw®
As in the problem studied in Section 2, it is tempting to hope that if F
itself is sufficiently smooth and belongs to the class 3w on an open set

6 then F will satisfy (15) in 6 .

=20~
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It is again helpful to recast the situation as a factoring problem.
Given F, we ask if there are functions h and f such that the following
diagram commutes

h
2 PSS

(16) R S R
\lf
. R

Here, f is unrestricted, and h belongs to the class ¥ of continuous
functions of the form h(x,y) = ¢(x) + U(y) .

Of course, if h could be chosen to be a bijection, RZ» R, every
function F is nomographic. Such a choice for h could not be continuous
on RZ; however, it is possible to construct a bijection h whose com-
ponent functions ¢ and ¢ are each continuous off a countable (dense)

set.

Theorem 8. Any function F(x,y) can be represented in the form f(&(x) + U(y)).

n N
More generally, any function F on the unit n-cell 1 = [0,1]1

can be written in the form

F(xl,xz, o5 ,xn) =
)n-l S B
fm(xl) + 2<:>(x2) + 4¢(x3) + ... 42 o(..n))
where ¢ is an increasing function on [ G,1] tc {0.1]

Proof: The key to the construction of h 1s the opservation that each integer
n
between 0 and 2 -1 has a unique expression as a sum of powers of 2:

the resulting function h will then be a bijection from [0,1] " into R ’

]




and given F we define f as Fe h-l and have F=f.h . The case n =

i{s typical. Let t be any real number, 0 =<= t<1l, and write t in

binary form as o0

where each tj is either 0 or 1. To obtain uniqueness, we replace any
terminal string of ls by an equivalent expression with terminal 0s . We

then define an increasing function ¢ by

o0
I A
o(t) = %‘ 87t = .ttot, ... (octal)

It is evident that ¢ is strictly increasing and maps [0,1] onto a subset
of [0, 1/7] . (We choose to set ¢(1) = .1l1ll... (octal) = 1/7 .)
If p=(x,y,2) ¢ 13, set ¢(x) = a, 2¢(y) = b,4d(z) = ¢ and write

each in octal:

as .ala2a3a4 (octal)
bh = .blb2b3b4 ey (octal)
c =, clc2c3c4 Ui (octal)

From the definition of ¢, we see that each a, is either 0 or 1, that
each bi is either 0 or 2, and each c1 either 0 or 4. With
h{x,y,2) = é(x) + 2¢(y) + 4¢(z) = a + b+ ¢, we see that

h(p) = . d1d2d3d4 sne (OGHAL)
where each digit d1 is just ai + bi + ¢, no carrying being necessary
except in the special case x = y = z = 1. Furthermore, since each

integer in {0,1,2,...,7} has a unique expression as sum of three

«22=
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selections from the set {0,1, 2, 4}, distinct points p = (x,y,2) yield
distinct values h(p) .

We now turn to the class 3o of functions that are continuously
representabie, and the weaker class I and ask for criteria that
distinguish their members from other functions. Referring back to the
mapping diagram (16) we note that any such characteristic properties of
a representable function F ¢ Sw must arise from the special nature of
the continuous functi‘ons B % The functions h(x,y) = ¢(x) + U(y)
defined on a rectangle S = IX JC R‘2 form a proper closed subspace ¥

of C{8] . ¥ P, P ,P3, P are the successive vertices of a rectangle

e 4
that lies in S, then the alternating sum of point masses at the points Pi

is a functional that annihilates &% . If he g then

’

(17) h(PI) = h(PZ) + h(P3) = h(P4) =0

Conversely, if h ¢ C[S] and if (17) holds for all choices of the points
Pi’ then h ¢ ¥ . This property is readily extended to any chain of 2n
points P1 which are vertices of a closed polygon in S with edges that
are successively vertical and horizontal. (See Figure 3 and [ 5] .)

We next examine the level sets of functions h ¢ & . Any set that
is a subset of some particular level set for a function g will be called a
sublevel set for g; thus, a A-sublevel set for g is a set on which g

is constantly A\ . The ¥ sets in S will be the collection of all sets that

are sublevel sets for any of the functions h ¢ ¥ . That some of these

“23
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Figure 3

sets are complicated in structure can be seen by considering an h for
which the component functions ¢ and ¢ are continuous but everywhere
non-differentiable.

Suppose that F ¢ ;;W(S), with F=f o h. If E is a sublevel set

for h in S, then E is a sublevel set for F. Cur next result is a simple

converse of this which turns out to be quite useful; because of it, any
property that is common to all the % sets must also hold for certain (and

sometimes all) of the level sets of a representable function F .

Theorem 9. Let F e 3W(S) . Then, thin connected sublevel sets for F

in 8 must be ¥ sets. Specifically, if F=f «h on §=1X7], and

EX is the A -level set for F in S, and E is any subset of Ex that

Qi
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1s connected and contains no_interior point of E)\, then E is a sublevel

set for h .

Proof: Let h(E) = ¢ CTR. If ¢ 1is a single point, E is a sublevel set
for h . Suppose o is an interval. Since F is constant on E, f(t) =
forall te o . Choose po e E so that h(po) is interior to o, and
then a neighborhood ¢ about pO so that h(8) Co , using the continuity
of h . Ciearly, we would then have F(p) = A\ forall p £6, and p0
would have been interior to E)\
We remark that if F is continuous, the set E could be taken as
any component of the boundary in S of the set of points p with F(p)> \
A trivial illustration may be helpful. Suppose that a function
h(x,y) = o) + Y(y) is constant on a vertical segment « in S=1IX7].
Clearly, & 1is constant on a subinterval ]0 CJ, and h will then also be
constant on every segment in S parallel to o . By virtue of Theorem 9,
i kg :5W(S) and is not constant on any open set in S, then F must
share this property; if F is constant on vertical segment, it must be
constant on each parallel segment. This shows immediately that functions
such as (x - c)2 e? do not belong to the weak class JW(S) on any open
rectangle S that contains a portion of the line x = ¢ . (In passing, we
note that the functions (x - c)2 G(y), with G of class CZ, satisfy the
differential equation (15) everywhere. )

Arnol'd noted a special case of this in [2] in connection with the

function F(x,y) = xy, which --- for the same reason --- does not belong

“2 %
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to the class 3, ©Onany open set containing the origin. However, in
the open first quadrant, we note that this function is exp(log x + log y) ,
which belongs to 3, - This same example shows that functions in the
class Gw can converge uniformly to functions that are not even in 3w s

For example,

izl B bR
Fn(x,y)- (x +n)e

belongs to :500(R2), and converges uniformly on all compact sets to
xzey which does not belong to f;w on any open set containing a point
of the Y axis.

To apply Theorem 9 further, we need other characteristic properties
of & sets. We can obtain one by using the annihilating property of the

linear functionals given by (17),also used by Arnol'd in a similar fashion in

[2].

Lemma 3. If E is a level set for h ¢ ¥ in the rectangle S = I X = ang

E contains any three of the four points (ai, bj)’ ;.4 =0}, then E

contains the fourth.

Proof: If Pi+2j = (ai, bj)' then

h(Po) - h(Pl) + h(P3) - h(PZ) =0
so that if, for example, h(PO) = h(Pl) = h(PZ) = \, then h(PB) =\

Combining this with Theorem 9, we have:

Theorem 10. If S=1IX ], and Fe 3W(S), if E)\ is the \ -level set

26~




for F in S, and if E is a connected subset of E)‘ containing no in-

terior point of Ex but which contains three of the points (ai, bj),

i,j = 0,1, then E)\ must contain the fourth point.

For example, F(x,y) = xz + Xy + yz does not belong to the class
% S on the square x| < 2, lyl < 2 since it has thin level sets in the
form of tilted ellipses that do not have the four-point property described
in Lemma 3, and Theorem 10. This same argument can be applied to any
of the functions x2 + PBxy + y2 with [32 # 4, and to any neighborhood
of the origin, thus showing that none of these functions is locally weakly
nomographic at (0, 0) . However, the present method does not answer
the question of local nomographic representability for these functions at
any point other than the origin, since the four-point property is a global
property of a single level line, and at no other point than (0,0) do the
level lines of the function x2 + xy + y2 converge. [We note in passing
that these functions, as f-+ 2, provide an example of functions lying out-
side the class - 53 but which converge uniformly on compact sets to a

function in namely (x + y)Z =]

F o
We therefore need another property of the g sets that is more local

in character. We note that such properties must have some refinement

since the level lines of the function xy, which is not in 3o very

closely resemble, locally, the level lines of the function xé + y(5 when

6 is very small.
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6. The six-point construction

To obtain the desired property, we return to the class of functionals
(17) which annihilate & , and consider one based on six point measures.
Suppose that six points pi are located as indicated in Figure 4, forming
vertices of a closed polygon with edges alternatingly vertical and hori-

zontal. Then, for any function h ¢ ¥ , one has
(18) h(pl) - h(PZ) 5 h(p3) = h(P4) + h(PS) = h(P6) =0

Suppose that h(pl) = h(p4) and h(p3) = h(pé) . Then it must follow that
h(pz) = h(ps) .

This means that, given two points on distinct level lines of a function
h in &, a geometric construction will produce pairs of points that must
lie on a third level line. We illustrate this procedure in an especially
simple case. Suppose that we are dealing with a specific function h e g,
and we choose two points P1 and PZ with h(P]) # h(PZ) . Suppose that
the level lines of h containing these points are as shown in Figure 5. If
we construct the dotted lines in the figure, thereby locating the additional
points QI’QZ’ P3, Q3, we see that it is necessarily true that h(P3) = h(Q3) :

Of course, not all functions h will have such simple level sets ---
e.g., h(x,y) = (x sin xul)2 + (y sin y‘1)2 . However, we can show that
the six-point construction described above will always work, locally, for

functions h that obey certain convenient restrictions.

28=
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Theorem 11. Let h(x,y) = &(x) + y(y) on the rectangle S = I X J, where

¢ and  are continuous and strictly increasing. Then, the six-point

construction applies locally everywhere in S . Specifically, if pO is

interior to S, and SO = I0 X IO is any rectangular neighborhood of Py

in S, then there isa 6 > 0 such that the six point construction can be

applied in SO‘ starting with any points Pl = (a,b) and P2 = (c,d) in

| <6, and a<ec, b<d.

S . such that fPi -p

0 0

Proof: Let po = (xo,yo), and assume xO

and Yo interior to [ﬁl,ﬁz] = JO C J. Let s bethe smallestofthe positive numbers

fd)(ai) - d)(xo)l, Iw(ﬁj) - MYO)I, for i,j = 1,2 . Choose 6 >0 so that
if |x - xol <é and |y - yol <6, then |o(x) - ¢(x0)l <s/3 and

l¢(y) - ¢(yo)l < s/3 . Assume that Pl and PZ have been chosen as
described above. Then, |a - x0| <é and |c - xol <6 and
0<u=¢(c)-d(a)<s/3+s/3. Since |b-y0| <6, Wb)-w(p)2s-s/3>u,

Hence, there is a unique vy = IO such that y < b and

(19) Y(b) - Uy) = u = ¢(c) - o(a)

In the same manner, we have
0<v=y(d)-yb)<s/3 +s/3
while
dla,) - #(c) > s - s/3>v

Hence, there is a unique x = I_ such that

0
(20) d(x) = ¢(c) = v = P(d) - Y(b)
-30- X
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Finally, we set Ql = (e, ¥), Q2 = (%, b}, P3 = (a,d) and
Q3 = (x,y) . All lie in SO, and by (19) h(Pl) = h(Ql), and by (20),
h(PZ) = h(QZ) . These in turn imply that h(P3) = h(Q3) . | A similar result
holds if ¢ is increasing, and ¢ decreasing] .

The reason for considering this special case lies in the following
simple result, which permits us to use Theorem 1l for an interesting class

of functions F(x,y), those that are separately univalent.

emma 4. Let F be continuous on a rectangle S =1X ], and (a,b) an

interior point of S such that

(21) if X, eI and P(xl, b) = P(xz, b), then X = X,

(22) if y, e]J and F(a, y)) = F(a, yz), then y, =y, .

H Ve :;W(S), then F can be writtenas f o h where h(x,y) = &(x) + y(y)

and ¢ and  are continuous and strictly monotonic on I and J, re-

spectively, and ¢(a) = y(b) = 0 . If, in addition, I =7 and F(x,y) =

F(y,x), then we can take ¢ = ¢, with both increasing.

Proof: If ¢(x1) = ¢(x2), then F(xl,b) = f(q:(xl) + (b)) = f(d)(xz) + Y(b))
= F(b.y,‘:), so that )4:1 = x2 . Since ¢ is continuous and univalent, ¢
is monotonic on I . The same argument applies to ¢ . Set ¢o(x) =

d(x) - ¢(a), kbo(Y) = Y(y) - y(b), fo(t) = f(t + ¢(a) + Y(b)), and we have
F= fo ° h0 where ho(x, y) = ¢o(x)+ 4;0 (y) . Suppose now that 1 =]

and F is symmetric. Since F(a,x) = F(x,a), we cantake b= a.

Suppose that ¢ were increasing but | decreasing. We can then choose
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uand v with u<a<v and ¢(v) = Y(u) . However, we would then
have F(a,u) = F(v,a) = F(a,v), with u# v. We can therefore assume
that ¢ and § are both increasing. Finally, suppose that there is s ¢ 1
with a <s and ¢(s) < y(s) . There must exist s , a<s_<s, with

0 0
d,;(so) = ¢(s) . As before, F(a,s) = F(s,a) = F(a,so), and s = Sg - Thus,
o= 4y.

This yields a necessary condition for weak nomographic representa-

bility that iz local and widely applicable.

Theorem 12. Let F e 3.W(S) where S = I X J, and suppose that F is

separately univalent on S . Then, forany a and c in T and b and d

in J, with |a-c| and |b-d]| sufficiently small, there must exist x

and y near a and b, respectively, such that

F(a,b) = F(c,y)

(23) F(c,d)

F(x,b)
F(a,d) = F(x,y)

This results immediately from the corresponding conditions on the
function h for which F = f « h . Note that the conclusion gives three
simultaneous equations for the two unknowns x and y . The fact that
these are not in general solvable for arbitrary F provides a method for
proving that a specific function F is nowhere locally representable in the
class 3 -t Before illustrating this with examples, we append another

generalization, dependent upon F being symmetric.
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Theorem 13. Let F ¢ :IW(S) where S = I X I, and suppose that F is

separately univalent on S, and that F(x,y) = F(y,x) . Then, for any

a and b in I, a<b, there exist values of X, in I, a= Xo < X <

X5 N o X = b, for any m> 3, which solve the m(m-1)/2 equations

(24) F(xj, xi+l

)=F‘(xi,xj ) 054 < S m=t
Proof: As before, we can assume that F = f « h, where h(x,y) = ¢(x)+ o(y) ,
and ¢ is strictly increasingon I . Set d = {¢(b) - d)(a)}/m, and then
choose points x. ¢l with a = %X, <x < ... X% <x = b sothat

i 1 m-1 m

¢>(xi+l) - ¢(xi) =d. Forany i and j with i< j, we then have

d(x,

1+1) = ¢(xi) = @(x

j+1) = ¢(Xj)

which implies h(x, ), and thus (24). We note that (24)

X
i+’

s o T
is a system of m(m-1)/2 simultaneous equations in m-1 unknowns. This
imposes a severe restriction on any specific function F, and makes it
possible to exclude some functions from membership in ¥ " Since the
condition applies to any square set S along the diagonal, this provides

a criterion for local non-representability.

To illustrate the use of Theorems 12 and 13, consider the function
F(x,y) = xz + xy + yz . From Theorem 10, we saw that this is not locally
weakly nomographic at (0,0) . We now see that it is locally nomographic
nowhere in the first quadrant. Specifically, one must show that if

a >0, b>0, then there exist infinitely many c,d with a<c¢, b<d,

such that the system
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a2+ab+ b2

2
c2+cy+y

(25) x2+bx+b2=c2+cd+d2

2
X +xy+y2=a2+ad+dZ

is inconsistent. Since this is (23), Theorem 12 applies.
If, instead, we use (24) --- since F is symmetric --- we may take

m = 4, and then if we show that the system

3xlz=az+ax2+x§

3x§=a2+ab+b2

3x§:bz+bx2+x§
xf+xlx2+x§=az+ax3+x§
x§+x2x3+x§= b2+bx2+x§
x12+x1x3+x§=az+ab+ bz

does not have a solution for any choice of a and b with 0<a<b, we
will also have proved that F is not locally nomographic.
Of these algebraic tasks, the first is easier, and therefore preferable.

From (25), one derives the relation

(x ~c)(y-b)+{(c-a)d-b)=20.
If c=a+a and d = b+ B, then one finds that either c= b, c= -b,
or

aB+ 2a) + b(2B+a)+al +ap+ i =0
none of which are acceptable since 0 <a<c, 0<b<d, and (c,d) can
be chosen arbitrarily in a neighborhood of (a,b) .

s
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Unfortunately, each application of Theorem 12 or 13 to test a specific
function seems ad hoc; the method is powerful but tedious to apply. For
example, to show that szy + xy2 is nowhere locally nomographic in the

first quadrant requires that one show inconsistency of the system

26°b ¢ wb” = 26%4 4 cd®

Zczy + cy2 = Zazb + ab2

szy + xy2 Zazd + adZ

i

(excluding the inadmissible solutions such as x = a, y = d with
a=c¢,b=4d.)

All of these support the following conjecture: a polynomial F(x,y)
will not belong to the weak class kI on any open set unless it satisfies
the differential equation (15), and can be written as f(¢(x) + Y(y)) with

f, ¢ and ¢ polynomials.

7. The closure of the nomographic functions

The purpose of this section is to obtain characteristic properties of
functions in the closure of the weak class :;W(S) where S is a fixed
rectangle. This will then provide a method for showing that specific func-
tions G cannot be approximated uniformly on compact sets by nomographic
functions f(¢(x) + (y)) where ¢ and { are continuous, but f unre-
stricted. Our proofs require that the function G be such that GxGy #0
on S, which we take to be IX J where I= [a,b], J=[c,d] . For

convenience, we deal here only with the case in which Gx >0 and
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Gy >0 on S . It then follows that G is separately strictly monotonic
in S, and that there is a constant M such that if p and q are points
of S with p << q, (meaning that p = (xl, yl), q= (xz, yZ) and
x < %,, v, 5 v, and |G(p) - G(q)] < &, then |p-q] <Mé.

If G lies in the closure of GW(S), then for any ¢ > 0 there exists
F s :;W(S) such that ”G -Fll < ¢/2 . F will then inherit some of the
properties of G in a modified form. One can expect certain similarities
between the level lines of F and of G so that the six-point construction
might be applied again. We first observe that if p and g lie in S with
p << q, and if F(p) = F(q), then lG(p) - G(q)] < ¢ and |p - q| < Me .
Likewise, if p<<g and h(p) = h(q), then F(p) = F(q), and again,
lp - qi < Me . Accordingly, the component functions ¢ and ¢ that enter
into h must have a weak form of univalence. Suppose that x, and x

1 2

lie in I and o(xl) = d)(xz) . We may assume that X < X, - Then, (xl,c)
<< (xz,c), and h(x],c) = h(xz,c), so that |xl = xzf < Me . The same
argument applies to y on ] . This suggests a useful definition.

A continuous real function g on [e,B] is said to be quasi-monotonic
(q.m) with gap A if g(x) = g(y) implies |x - y| <A, for any x,y in [a,B].

Observe that we have just shown that ¢ and ( are quasi-monotonic
with gap A= Me . Since e can be arbitrarily small, we henceforth
assume that A<L/6, where L is the shortest side of S.

Quasi-monotonic functions are almost monotonic on their domain.

They need not be locally 1-to-1, nor do they have to be uniformly close to
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a monotonic function. However, they have the following property.

Lemma 5. If g is q.m. with gap A on [ae,B], and g(e) <g(B), and

3

A

x<y<p with y-x>4A then g(x)<g(y). In particular, if

a+A<x<p-A, then g(a) <g(x) <g(p).

Proof: If g(x) > g(y), then there exists z, a; z; x with a(z) = gly) .
Clearly, |z - yl > A, which is impossible. The last statement in the
lemma follows by specializing x and vy .

Thus, when ¢ is sufficiently small and F ¢ :}W(S) with |G - F|
< ¢/2, we may assume that F = f « h where h(x,y) = &)+ ¢(y) and
¢ and ¢ are quasi-monotonic with gap A on the intervals I and J
respectively. As before, we can also assume that this representation has
been modified if necessary so that ¢(a) = y(c) = 0, and A = d)(b); 0

Put B = (d) .

Lemma 6. A>0 and B> 0. d

Proof: Examine the behavior of h(x,y) on the boundary of S . At the
lower left corner, (a,c), it takes the value 0, while h(a,d) = B and
h(b,c) = A . Since the distance from (a,c) to any point along the upper
edge or the right hand edge of S is greater than A and since all such
points p obey (a,c) << p, it follows that h cannot take the value 0
anywhere on these edges. Since Az U, A~ 9 ., K B=<_ 0, then there
would have to be a point p on these edges where h(p) = 0; thus, B> 0.
We now show that the six-point construction applies to h(x,y) in

the rectangle S .

=

R
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Theorem 14. Let (u,v) be any point in S such that |2u - (a+b)| <2L/3 ,

[2v - (c+d)] < 2L/3 . Then, one of the following statements must be true:

(i) there exist x and y in J such that h(a,x) = h(u,c),
h(a,y) = h(b,c), h(b,x) = h(u,y)
(ii) there exist x and y in I such that h(x,c) = h(a,v),

h(y,c) = h(a,d), h(x,d) = h(y,V)

Proof: The choice between (i) and (ii) depends on the comparative size
of A and B. Suppose A< B. Choose y & ] so that Y(y) = A .
Since u is within L/3 of the midpoint of I, and since A<L/6,
a+A<u<b-A. Hence, 0<¢(u)<A . Choose x t£] so that ¥(x) = o(u) .
Inspection then shows that the statements in (i) are all valid. If B = A,
a similar argument leads to (ii).

This in turn yields the desired criterion for approximate representa-

bility.

Theorem 15. Let G be continuous on S = I X J, where I = [a,b] and

J = [c,d]. Suppose also that G > o and Gy>c on S, ¢ >0 . Let

(u,v) be any point in S such that |2u - (a+b)| < 2L/3 and |2v - (c+d)l

< 2L/3, where L is the length of the shorter side of S . If G lies in

the uniform closure of :;W(S) then for any sufficiently small e

[e <Lo /12 will do], one of the following statements must hold:

(i) there exist x and y in J such that

|G(a, x) ~ G(u,c)| < ¢
|G(a,y) - Gb,c)| < e
|G(b, x) - G(u, y)| <

o




(ii) there exist x and y in I such that

|G(x,c) - G(a, V)] < e
|G(y, c) - G(a,d)| <«
|G(x,d) - G(y, v)| < e

Proof: Choose ¢ small, and F ¢ JW(S) so that ”G - F” <.ef2:. The
previous analysis applies to F and h must satisfy one of the statements
(i) and (ii) in Theorem 14. Since F = f - h, so must F, and since

|G(p) - F(p)l < ¢/2 forany p e S, the statements (i) and (ii) in Theorem

15 hold. The number M in the previous discussion can be taken to be 2/o |

so that L/(6M) = Lo /12 .

That this result is an effective criterion can be seen by a simple
illustration. Let S be the square with (1,0) and (2,1) an opposite
vertices, and take (u,v) = (1.5, .5). Then, if G(x,y) = xz + Xy + y2
statement (ii) in Theorem 15 is the assertion that the following system has

a solution for all sufficiently small ¢ :

I ~1.75] < e
(26) Iy ek s

HxZ4 x 4. 1) ~ " % By 25} < ¢

However, if x =V1.75 and y = V3 | the third inequality becomes

|4.07287 - 4.116025]| < ¢, and (26) cannot have a simultaneous solution
&

for small ¢ . Hence, x + xy+ y2 cannot be approximated uniformly on

S by functions in the weak nomographic class & - In the same way,
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using small rectangles S, one may verify that x2 + Xy + y2 is nowhere
locally approximable by functions from :}w anywhere in the open first
quadrant.

Finally, we note that this same approach enables one to estimate
the uniform distance from a function G to the class :5w . For example,
from (26), construct the function

i vy et - 5758 I® =3 Inf e dyT by ~ s 28]

Since K is never 0 on S, it must have a positive minimum, y . How-
ever, by the argument used in Theorem 15, if [|G - F ll < e/2 for some
Fe :;W(S), then (26) will have solutions x and y for which K(x,y) < 3e .
Thus, ¢ > y/3, and we have obtained a lower bound on the distance from
x2 + Xy + yz to :;W(S) 3

When I =] and G is also symmetric, so that G(x,y) = G(y,x) ,
another approach can also be used, similar to that of Theorem 13. As before,
suppose that |[|G - Fll < e/2 where F=f o h and h(x,y) = #(x) + Y(y)
on S=[a,b] 2, and ¢ and ( are quasi-monotonic and ¢(a) = Y(a) = 0,
¢(b) = A, Y(b) = B. Even though G is symmetric, it does not follow that
¢ = ¢ . However, if ¢(x) = Y(y), then h(a,y) = h(x,a) and F(a,y) =
F(x,a), so that lG(a,y) - G(x,a)l < ¢ . But, G is symmetric, so
[G(a,y) - G(a,x)) <¢ and [|x -yl <Me = A. In particular, it follows
that if A < B, there is a ; in I with ;> b - A and lb(;) = A, while
if B< A, thereisan x in I with x>b- A and ¢(x) = B. Assume

that we have A < B; then, for any integer m > 3, we can choose xi
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and Y, in I with a:xoxxl“xzx’... <xm=b and a=y0<yl<’

S ¥y, FY ¥ that ®(xi+l) - (b(xi) = A/m = MYH‘[) - ‘P(yj) _ This

implies that F(xi’yj+l) = F(xi+1’ yj) for all i and j, and thus

- < 1 ing.
IG(xi, yj+l) G(yj, xi+l)’ € We have thus proved the following

Theorem 16. Let G be continuous and symmetric on S = [a,b] 2, and

suppose that Gx and Gy are bounded below by ¢ >0 on S . Then,

for any 6 > 0 and any sufficiently small ¢, and any integer m > 3,

there exist points xi and yj in I such that a = x0 < X 5 el

i B <y2<..., with xm>b—6 and ym>b-6, and

1
r

T <
IG(xi,yjH) G(y;, "m" ¢

forall i and .

Most of the results in this and the two preceding sections carry
over to the class of functions of n-variables of the form F(xl,xz, HE ,xn)
= f(‘bl(xl) + d>2(x2) AR cbn(xn)) since they depend mainly on the class

of annihilating functional for the class & , which has an immediate

analogue in the more general case.

8. Other classes and methods

We once more change our notation so that 3n(S) now refers to the
class of those functions F(x,y,z) which can be represented on the set S
in the form f(e(x,y), W(y,2z)), with f, ¢ and § of class c" . As seen in
Section 2, any function F has such a representation if f, ¢ and { are

unrestricted. However, it is natural to conjecture that :}0(8) is a
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relatively thin subset of C[S8], and that a function such as Fo(x, y,z)
= Xy + yz + xz does not even belong to the closure of 3W(S) where S
is any cube in the open positive octant. We are not able to prove this
much; the class 30(8) is considerably more complex in structure than
those discussed in previous sections, and much less tractable. The

following elementary result illustrates this fact.

Theorem 17. Any function F in 34(8) is the solution in S of a specific

4th order partial differential equation with 55 terms.

Proof: Assuming that F(x,y,z) = f(e(x,y), U(y,z)), we have Fx = fl‘pl :

F = flwz + fzq;l, ¥

v = fzxpz, using a subscript notation for partial

b
derivatives. Hence,

(27) F =FG+FH
y X z

where G is independent of z and H is independent of x . Differentiat-

ing again, we obtain

F: =F ‘G+EB H*F: G
Xy XX X2 % =1
F _=F G+F H+TFH
yz X2z z2 £ -2
F s F G+ H+F G $F B
Xyz XXZ Xzz ¥z 1 o o A

Together with (27), we now have four equations in G, H, Gl’ }-I2 which
can be solved, obtaining an expression for G solely in terms of derivatives
of G. Since 8G/d8z = 0, we can differentiate this expression and thus
obtain the desired equation which must be satisfied by F . (Since it is

a long and tedious calculation and the result contains so many terms,
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there is little reason to include the final equation here. Should any reader
of this be sufficiently curious to wish to see the complete equation, it
may be obtained by writing the author. )

In spite of this inherent complexity, it is possible to prove a non-

‘representability theorem, assuming only C' .

Theorem 18. The function F(x,y,z) = xy + yz + xz does not belong to

3
:;l(lR e

Proof: We assume that F = f(@(x,y), ¢(y,2z)), with f ¢, and ¢ differ-

entiable, and obtain

TR R R
Fy: fl<p2+f2¢1= X+ z
Pz= lepzz y+ X

Then put G(x,y) = ¢,(x,y)/¢|(x,¥), and H(y,2) = §(y,2)/¥,(v,2) to
obtain

(28) x+z= (y+2z)G(x,y)+ (y +x) H(y, 2)

I1f we solve this for G we obtain

G(x,y) =———'(x""")"xl-§+z £ +—"L‘(L—)'z- I;_z 2l

Since the left side is independent of z for each x, and the right side
has the form a(y,z)x + B(y,z), it follows that a(y,z) and B(y,z) are
each independent of z, giving us the relation

(29) G(x,y) = aly)x + B(y)
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Similarly, we can solve (28) for H to obtain

l"G Y = 3
. x(-:-(yY) A L\){(Cj(;c y)

and by a similar argument, find that

(30) H(y,z) = v(y)z + é(y) .
Putting (29) and (30) back into (28), we have

x+y={yaly)+ 6(y)}x+ {y vy(y)+ B(y)}z

+ {aly) + v (v)}xz + {B(y) + 6(y)}y

Since this holds for all x,y and z, it follows that

1= ya(y)+ é(y)
1= yvy(y)+ B(y)
0 = a(y) + y(y)
0 = B(y) + 8(y)

which are readily seen to be inconsistent. Accordingly, the assumed
representation of xy + yz + xz cannot hold.

It would obviously be of interest to prove that xy + yz + xz is not
a member of :;0(R3), or of 3w(]R3) . More usefully, it would be
interesting to obtain generally applicable criteria for non-representability,
and to investigate the approximation properties of these classes.

The results of the preceding sections use techniques that are ad
hoc. There are certain common threads which may lead eventually to a
general theory: (i) the analysis of level sets, (ii) the use of functional
equations and inequalities, (iii) the determination of characteristic auto-

morphisms and (iv) the use of the associated differential equations.
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The general problem we are dealing with is that of finding significant
characterizations for the class of functions that are representable by a
specified format, or that may be uniformly approximated by such functions.
The first technique, that of analyzing level sets, depends upon the recog-
nition that we are dealing with a conventional factoring problem. De-
pending upon the exact nature of the superposition schemata under study,

we have a mapping diagram such as the following

: !
R
where F is given, and where we are attempting to decide if there are
maps f, g, h, k lying in certain specific classes of mappings such that
the diagram commutes. Clearly, if the nature of any of the component
maps f, g, h, k force two points of S to have the same image in R,

this behavior must be imitated by F, either exactly if we are dealing with

membership or approximately if we are examining the uniform closure of a
function class.

The method of functional equations and inequalities offers promise;
it is well illustrated by the material in Section 6. Here, the nature of the
functional format implied the existence of solutions to certain systems of

equations, thus providing necessary conditions for representability.

-4 5=




However, at present it would seem that each schemata must be analyzed
independently, and no general methods are ir sight.

The third method is mathematically attractive, but as yet has
achieved no success. One first seeks to characterize a given class of
functions 3 by the transformations that leave it invariant. For example,
the class 3(RZ) of all nomographic functions F of the form f(g(x) + U(y))
is carried into itself by the following mappings:

F+ G where G(x,y) = g(F(x,y))

F+- G where G(x,y) = F(y,x)

F-+ G where G(x,y) = F(g(x),y)
If in addition, we specify that ¥ contains the function x+ y, then we
have uniquely characterized the class 3 . Does this help to settle such
questions as the relative sparsity of % as a subset of C[¢ ] ? Is there
a similar characterization for the closure of % ? Finally, does this in
any way permit one to decide if an individual function FO lies in 3 ,
and if not, to determine the distance from FO to 3, or to identify the
nearest member of 3 ?

The last general method deserves somewhat more discussion. As
has been shown in several cases, it is generally possible to construct
one or more partial differential equations which must be satisfied by any

function F in the function class 3 . (See [17] ) The reasons for this

are in part combinatorial.
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Theorem 19. If F is a Cm function of N variables, then in general it

has (N"}:-l) essentially different partial derivatives of order k .

Proof: Let the number in question be A(N, k), so that we have A(N,1) = N

and A(l,k) = 1. A(N,k) is also the number of sequences c = <c1, 2

. & ey G WHere 6. S ¢

K 1 £ .50 and cie{l, 2,..., N} . Partition

2 k

the class ¢ of such sequences c¢ according to the value of cl so that

n = (‘1 U ("2 ) [k | (‘N. When c = ji= the sequence

c'acgé .y B

51 Cas e K

Hence, o contains A(N,k-1) members. Similarly, if c, = - G -

k -1 sequence with terms from {2,3,...,N} so that (‘2 contains

A(N - 1,k -=1) members. This leads to the recursive equation

a2

AN, k) = ), A, k-1)
j=1

from which the formula A(N,k) = (N"t-l) is found in the usual way.

Corollary. If F is a Cw function of N variables, then in general the

number of essentially different partial derivatives of all orders k for

1<k <m is given by

B(N, m) = (N'r'nm] 5

Suppose now that we are studying a specific function class, for

example, those functions of three variables of the form

(31) F(x,y,2) = f(o(x,y), Wy, z)) .

If we differentiate this m times, we will obtain B(3,m) equations, one

for each of the partial derivatives of F . Each of these equations will

e

> is k -1 long and its terms also lie in {I[,2,...,N} .
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involve derivatives of f, ¢ and { of orders at most m . Since these
three functions are functions of only two variables, the total number of
new functions to arise will be at most 3B(2,m) . We now ask if there is
a choice of m such that

B(3,m) > 3B(2, m)

We find that B(3,6) = 83 and 3B(2,6) = 81.

Thus, if we were to differentiate (31) six times, we would have 83
equations involving at most 81 different derivatives of f, ¢, and | .
Eliminating these, we would be able to determine a single relationship
involving all or some of the 83 different partial derivatives of F. (In
fact, as indicated in Section 4, one need only differentiate four times,
and the resulting monstrous nonlinear differential equation can be given
explicitly. )

This is illustrative of the general case. Given a specific format for
expressing a function F of N variables as a superposition of r functions
of fewer variables, one may choose a sufficiently large m so that
B(N, m) > r B(N-1, m), and thus (in theory) arrive at a differential equation
for F .,

Sometimes, indeed, more then one equation must be satisfied. For
example, if we are interested in functions of the form F(x,y,z,w) =
flo(x,y), W(z,w)), then the general method outlined above shows that
there ought to be a differential relation involving at most third order
derivatives of F . In fact, it is easily seen that F must obey the

following system of four second order equations
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PR =F Pz
y X2z X yz
S B R
Yy Xw X yw
Y F ~F F. =0
zZ XW Xz
F F -F F =0

z yw w yz

As the examples have shown, the differential equations one obtains
are nonlinear and often of high degree, and in themselves unenlightening.
Moreover, it is only for functions F that have very smooth representations
that we can assert that the equations are satisfied. Is there any way that
these equations can be used to settle questions of continuous represent-
ability? For example, we conjeziure that any Cw function F which is
of the form f(e(x,y), W(y,z)) with f, ¢ and § continuous must in fact
satisfy the characteristic 4th order differential equation for this family,
almost everywhere: One method to approach this would be tc prove that a
c” function which is the uniform limit of C” solutions of the differential
equation must itself be a solution. However, known results in the theory
of nonlinear equations do not as yet support this.

We also conjecture that the distance from a function G to a function
class 3 on a compact set S can be estimated from below by means of
the maximum of the corresponding differential expression, applied to G

on the set S,

R. C. Buck
MRC

Univ. of Wis.
Madison
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